Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Hans-Joachim Lehmler, ${ }^{a}$ Sean Parkin ${ }^{\text {b }}$ and Larry W. Robertson ${ }^{\text {a }}$

${ }^{\text {a }}$ Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0305, USA, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA

Correspondence e-mail:
Iwrobe01@pop.uky.edu

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.026$
$w R$ factor $=0.054$
Data-to-parameter ratio $=16.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

2,3,4'-Trichlorobiphenyl

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{Cl}_{3}$, the dihedral angle of the biphenyl moiety is $51.21(5)^{\circ}$.

Comment

Polychlorinated biphenyls (PCBs) are persistent and widespread environmental contaminants (Hansen, 1999). Their lipophilic character and resistance to degradation contribute to the tendency of PCBs to accumulate in the food chain, where they present an environmental and human health hazard (Hansen, 1999). The three-dimensional structure of a PCB congener is strongly correlated with its toxicity. For example, derivatives without ortho chlorine substituents, also referred to as 'co-planar PCBs', are known to bind to the Ah receptor, and their mechanism of toxicity is well investigated. Recently other targets with differing structural requirements have been identified as affecting several organ systems (Robertson \& Hansen, 2001).

Out of 209 possible PCB congeners, only the crystal structures of seven PCB congeners have been described. The bond distances and bond angles in the title compound, (I), are similar to those found in other chlorinated biphenyls [summarized by Miao et al. (1997)]. The torsion angle between the two phenyl rings of PCBs appears to depend on the degree of chlorination at the ortho position. According to published data, mono-ortho, di-ortho and tetra-ortho substituted PCBs show dihedral angles of 49-52, 58-67 and 86-87 ${ }^{\circ}$, respectively [summarized by Miao et al. (1997) and Singh et al. (1986)]. The dihedral angle of $(\mathrm{I}), 51.21(5)^{\circ}$, is the same as those published for PCB congeners with one ortho substituent. The theoretical torsion angles of mono-ortho PCBs calculated by Höfler et al. (1988) are larger ($60-72^{\circ}$) than those reported for the solid state. Thus, packing effects appear to influence the torsion angle between the two phenyl rings of PCBs in the solid state.

Experimental

The title compound, (I), was synthesized in 70% yield by the palla-dium-catalyzed cross coupling of 4 -chlorobenzene boronic acid and 2,3-dichlorobromobenzene (Lehmler \& Robertson, 2001; Bauer et al., 1995). Colourless needles were obtained upon crystallization from methanol; m.p. 341-342 K.

Received 30 November 2000 Accepted 22 December 2000 Online 10 January 2001

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{Cl}_{3}$
$M_{r}=257.53$
Monoclinic, $C c$
$a=3.9010(10) \AA$
$b=17.398$ (2) \AA
$c=15.749$ (2) \AA
$\beta=94.510(10)^{\circ}$
$V=1065.6(3) \AA^{3}$
$Z=4$
$D_{x}=1.605 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7599 reflections
$\theta=1.0-27.5^{\circ}$
$\mu=0.82 \mathrm{~mm}^{-1}$
$T=173$ (1) K
Irregular flattened needle, colourless
$0.24 \times 0.20 \times 0.07 \mathrm{~mm}$

Data collection
Nonius KappaCCD diffractometer ω scans at fixed $\chi=55^{\circ}$
4022 measured reflections
2305 independent reflections
2197 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.054$
$S=1.07$
2305 reflections
137 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0115 P)^{2}\right.$
$+0.3392 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$

Figure 1
A view of (I) with non-H atom displacement ellipsoids drawn at the 50% probability level.

DENZO-SMN (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X P$ in SHELXTL/PC (Sheldrick, 1994); software used to prepare material for publication: SHELX97-2 (Sheldrick, 1997) and local procedures.

The authors want to thank John W. Layton from the Nuclear Magnetic Resonance (NMR) Facility of the University of Kentucky and Jan St. Pyrek from the University of Kentucky Life Sciences Mass Spectrometry Facility for their support. This publication was made possible by grant number P42 ES 07380 from NIEHS with funding provided by EPA. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIEHS, NIH or EPA.

References

Bauer, U., Amaro, A. R. \& Robertson, L. W. (1995). Chem. Res. Toxicol. 8, 9295.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hansen, L. G. (1999). In The ortho Side of PCBs: Occurrence and Disposition. Boston: Kluwer Academic Publishers.
Höfler, F., Melzer, H., Möckel, H. J., Robertson, L. W. \& Anklam, E. (1988). J. Agric. Food Chem. 36, 961-965.
Lehmler, H.-J. \& Robertson, L. W. (2001). Chemosphere. In the press.
Miao, X., Chu, S., Xu, X. \& Jin, X. (1997). Chin. J. Chem. 42, 1803-1806.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.
Robertson, L. W. \& Hansen, L. G. (2001). In Recent Advances in the Environmental Toxicology and Health Effects of PCBs. Lexington: University Press of Kentucky.
Sheldrick, G. M. (1994). SHELXTL/PC. Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97, SHELXS97 and SHELX97-2. University of Göttingen, Germany.
Singh, P., Pedersen, L. G. \& McKinney, J. D. (1986). Acta Cryst. C42, 11721175.

